ULTRACLEAN TECHNOLOGIES AND MICROMANUFACTURING

Fraunhofer Institute for Manufacturing Engineering and Automation IPA
Dipl.-Ing. Guido Kreck
WP3400:
Cleanliness Analysis of Robotic Arm and End-Effectors

Task:
- Provide introduction to analysis task that will be completed by Fraunhofer IPA
- Research design of proposed Robotic Arm (KUKA LBR IIWA 7 R800/R820), estimate level of cleanliness and compare cleanliness to cleanest robotic arm available (e.g. Kawasaki MSR05)
- Assess methods that can be used to make proposed Robotic Arm (KUKA LBR IIWA 7 R800/R820) to have improved levels of cleanliness
- Research design of proposed End Effectors (TBC), estimate level of cleanliness and compare cleanliness to cleanest End Effectors available
- Assess methods that can be used to make proposed End Effectors to have improved levels of cleanliness
- Outline general guidance for modification of equipment for use in the ultra-clean environment of a Double Walled Isolator

Output:
- Cleanliness Analysis of Robotic Arm and End Effectors
Analysis Tasks
What to take care of?

- **Main task of cleanroom:** to reduce airborne, particulate contamination

- **False** assumption: a cleanroom itself will solve all my contamination problems

- **Better** approach: **product** and it’s cleanliness specifications = **middle of the consideration**
Causes of contamination, trends in cleanroom operation

- Cleanroom technology = basic pre-requisite
- Assembly, processes, equipment, staff, ... as sources of contamination
- Contamination sediments onto surfaces
- Storage and risk of transfer to other objects
- Avoidance and, if applicable, elimination strategies

Basic pre-requisite
Control of particles
Also: outgassing, ESD, etc.

Avoidance/elimination of (cross-)contamination
Critical Contaminants

- **abiotic**
 - manufacturing process residues (dust from abrasive processes, abrading agents, …)
 - dust from the environment
 - extraterrestrial samples
 - etc.

- **biotic**
 - bacteria
 - spores
 - flakes of skin & cell fragments
 - etc.

- **filmic (organic & anorganic)**
 - residues from auxiliary production materials (cooling lubricants, preserving agents, …)
 - fingerprints
 - etc.
Required Tests

1. **Particles** – requirements for cleanroom suitability
 Requirements derive from particle cleanliness specs acc. to ISO 14644-1

2. **Outgassing behaviour**
 To minimize influence on production process, outgassing potential of equipments must be defined.
 Classification acc. to ISO 14644-8

3. **Cleanability** of equipment surfaces
 Ability to clean contaminated equipment-surfaces (reduction of particle cont.) will be described by SCP-classes, as defined in ISO 14644-9

4. **Chemical resistance**
 Requirements for the chemical resistance of used equipments should be described by details of resistance figures, as defined in ISO 2812-1

5. **Hygienic Design**

6. **Airflow visualization/simulation**

7. **H2O2 absorption/desorption**

8. **Riboflavin test to assess cleanability**

9. **Microbiological Resistance and Microbicidity**
Aim:
assess the cleanroom suitability of operating utilities

- **Wrong:** product has air cleanliness class ISO Class 4!
- Operating utilities **do not** have an air cleanliness class
- **Suitability for use** in defined air cleanliness class
- Reason: air cleanliness class = concentration of contamination per volume of air
- **Air cleanliness class:** characterizes only quality of first air in a cleanroom
- Operating utilities: do not generate a volume of air!
- Operating utilities: **do not fulfill an air cleanliness classification**
- **Standardized procedure for cleanroom suitability tests with clear meaningful interpretation of results needed**
- **Solution:** implement the guideline VDI 2083: Part 9.1
 »Compatibility with required cleanliness and surface cleanliness«
 (previously Part 8)
1) Measurement Procedure to classify **Equipment** for their Cleanroom Suitability (particle behaviour)

- Test environment determination
- Decontamination of specimen
- Definition of test parameters
- Localis. specimen’s weak points
- Classification measurements
- Statistical verification

- Classification in regards of particle emission: production equipment **is suitable for its use in cleanroom class »X«**
- False statement: production equipment **has a cleanroom class »Y«**
2) Outgassing behaviour of used Equipment Materials

To find out about the suitability of equipments to be used in AMC-controlled environments:
→ emission behaviour of equipment has to be determined

Critical components for clean applications:
Amines, Phthalates, Organophosphates, Siloxanes, Dopants, Total VOC and others

Materials used in robot systems with possible outgassing behaviour to be monitored:
- Lubricants and sealants
- Surface treatments, coatings and paints
- Plastics and elastomers
3) Cleanability of Surfaces

Requirements:

- Smooth surfaces with **low surface roughness** value R_a → **easy to clean** (e.g. Life-Science industry: $R_a < 0.8 \, \mu m$; ISPE; EHEDG ...)

- State-of-the-art measurement systems: SEM, AFM, ...

<table>
<thead>
<tr>
<th>Technical Surface</th>
<th>Surface roughness</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_a [\mu m]$</td>
<td>$R_{max} [\mu m]$</td>
<td></td>
</tr>
<tr>
<td>Stainless steel, electropolished</td>
<td>0.40</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>Stainless steel, polished (V2A)</td>
<td>0.65</td>
<td>5.61</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>0.02</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Silicon wafer</td>
<td>0.001</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Source: stainless steel surface, AFM-picture, Fraunhofer IPA
4) Chemical Resistance of equipment/material surfaces

- Materials: resistant against cleaning and disinfectant liquids being used
- Surfaces: flat and even
- **Range of chemicals** (hedge):
 - butyl acetate
 - diethyl ether
 - peracetic acid (1%)
 - hydrochloric acid (5%)
 - aceton (100%)
 - formalin (37%)
 - hydrogen peroxide (30%)
 - ammonia (25%)
 - ethanol (100%)
 - isopropanol (70%)

Source: painted robot housing, Fraunhofer IPA
Strategy to improve level of cleanliness
Improvements Strategy

Develop optimization potentials regarding the cleanliness suitability of the robotic arms and end effectors in the following steps:

- inspection of typical systems, subassemblies and production area
- explanations of the systems, subassemblies and production area
- clarification of current problems regarding the manufacture of cleanroom suitable operating utilities, components (selection/mode of operation/layout), devices, equipment, materials and the manufacturing environment
- explanation of possible measures necessary, handling requirements and solutions
Factors influencing cleanliness suitability
Cleanliness-suitable equipment design

Materials used
- Particles
- Outgassing behavior
- Electrostatic properties
- Cleanability
- Chemical resistance
- Ability to resist metabolism
- Toxicity

Material properties relevant for:
- Semiconductor industry
- Life science industry
Factors influencing cleanroom suitability
Cleanliness suitable equipment design

Materials utilized

- Construction of wafer handling system

Design

- **Airflow guidance**
 - Product constantly **subjected to flow of clean air**, **perforated** surfaces, **airflow-optimized shapes** for closed surfaces (e.g. »teardrop lights«)
 - Active airflow **guidance**, e.g. shadowing of operator/sources of contamination using static positive pressure

Constructional measures

- Minimize **friction** processes; **surface** quality
- **Placement** of sources of contamination: downstream of product or in outer area
- **Encapsulation** or use of a vacuum (extraction)
Factors influencing cleanroom suitability
Cleanliness suitable equipment design

Assembly
- Under cleanroom conditions
- Protective clothing and restricted personnel behavior
- Tools, workplaces must be kept clean
- Single components to be cleaned before being assembled
- Assembly (e.g. joining) might be contaminating
- Final cleaning of products
- Avoid rework
- Cleanliness optimized packaging and transport
KUKA LBR IIWA 7 R800/R820
Current Cleanliness Status: KUKA LBR IIWA 7 R800/R820

<table>
<thead>
<tr>
<th>Subject of Test</th>
<th>Parameter</th>
<th>Assessment for / Results</th>
<th>Documents (valid до)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle emission (VDI 2083 part 9:1)</td>
<td>Moving axis: 1-7</td>
<td>2</td>
<td>certificate_1.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Capacity: 40 %</td>
<td>3</td>
<td>certificate_2.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Attached payload: 7 kg</td>
<td>2</td>
<td>certificate_3.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Vacuum suction: 7 m³/h</td>
<td>2</td>
<td>certificate_4.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 1: -150 - 150 °</td>
<td>3</td>
<td>certificate_5.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 2: -70 - 70 °</td>
<td>3</td>
<td>certificate_6.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 3: -150 - 150 °</td>
<td>3</td>
<td>certificate_7.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 4: -70 - 70 °</td>
<td>3</td>
<td>certificate_8.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 5: -150 - 150 °</td>
<td>3</td>
<td>certificate_9.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 6: -70 - 70 °</td>
<td>3</td>
<td>certificate_10.pdf (11-20)</td>
</tr>
<tr>
<td></td>
<td>Axis 7: -150 - 150 °</td>
<td>3</td>
<td>certificate_11.pdf (11-20)</td>
</tr>
</tbody>
</table>

→ between ISO Class 2 to 3

http://www.db.cleanmanufacturing.fraunhofer.de/en/web/guest/qdb/-/ipa-cmqd-search/show?_search_WAR_managecontacts_unitUnderTestId=1706&_search_WAR_managecontacts_categoryId=0&_search_WAR_managecontacts_worstIsoClass=0&_search_WAR_managecontacts_year=0&_search_WAR_managecontacts_search=kuka+lbr&_search_WAR_managecontacts_subjectOfTest=%25&_search_WAR_managecontacts_orderBy=sortingWorstIsoClass&_search_WAR_managecontacts_currentPage=1
Annex
1) Airborne Particle Cleanliness acc. to 14644-1 and WG11

- Particle concentration within air volume of 1 m³ ➔ **cleanroom classification** (acc. to 14644-1)

- Particle concentration on single point of an equipment, “emitted into” air volume of 1 m³ ➔ **equipment classification** (acc. to WG11-approach)

\[C_n = 10^N \times (0,1/D)^{208} \]
1) Particle Emission Test of a Robot System – Interpretation of Measurement Values

![Graph showing particle emission over time for different measurement points and ISO classes.]

- **ISO CLASS 1**: Meets the required standard.
- **ISO CLASS 2**: Close to meeting the standard but may require minor adjustments.
- **ISO CLASS 3?**: Requires further investigation or improvement.

Legend:
- Red: Measurement point 1
- Green: Measurement point 2
- Blue: Measurement point 3
- Pink: Measurement point 4

Axes:
- Y-axis: Particles ≥ 0.1 µm per min
- X-axis: Measuring time [min]
1) Particle Emission Test of a Robot System – Statistical Analysis (as Example on MP1)

<table>
<thead>
<tr>
<th>Measurement Points</th>
<th>MP1</th>
<th>MP2</th>
<th>MP3</th>
<th>MP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean values for the detection size [particles / cft]</td>
<td>0.2 µm</td>
<td>91.7</td>
<td>0.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>0.3 µm</td>
<td>20.1</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>0.5 µm</td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5.0 µm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Standard deviation for the detection size [particles / cft]</td>
<td>0.2 µm</td>
<td>0.2</td>
<td>0.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>0.3 µm</td>
<td>3.7</td>
<td>0.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0.5 µm</td>
<td>2.6</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5.0 µm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- **Probability of exceeding limiting values for the detection size [%]**

- **Statistical certainty of keeping within the required limiting value for the given air cleanliness class [%]**

Determination of **probability** to exceed particle class limits

- at single measurement points

- in acc. to class limits of ISO 14644-1 (or any other air cleanliness standard)

- classification with Poisson- and Student-t-statistics
1) Particle Emission Test of a Robot System
Overview: Air Cleanliness Classes

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Limiting values of each Air Cleanliness Class for differing particle sizes and reference volumes (according to ISO 14644-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 14644-1</td>
<td>0.1 µm</td>
</tr>
<tr>
<td></td>
<td>0.1 µm</td>
</tr>
<tr>
<td></td>
<td>per m²</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>1,240</td>
</tr>
<tr>
<td>5</td>
<td>10,000</td>
</tr>
<tr>
<td>6</td>
<td>12,000</td>
</tr>
<tr>
<td>7</td>
<td>100,000</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

© Fraunhofer IPA
2) **Outgassing behaviour** – Measurement Technique

- Defined set of parameters: sample size, material, assessment time after production, purge time, temperature, change of air volume, etc.
2) Outgassing behaviour
– Assessment

- **Qualitative** measurements: which substances

- **Quantitative** measurements:
 - mass of outgassing substances
 - Single substances (VOC) & Total quantity (TVOC)

- New: mass of outgassing substances correlated to »active« surface area of the sample in µg/m² (until now: µg/g, µg/m³)

- Basis of classification = outgassing-mass, »emitted into« air volume of 1 m³ → concentration in g/m³

- Classification acc. to ISO 14644-8, e.g. TVOC (23 °C), **ISO class [acc] -5**

<table>
<thead>
<tr>
<th>ISO-AMC Class</th>
<th>0</th>
<th>-1</th>
<th>-2</th>
<th>-3</th>
<th>-4</th>
<th>-5</th>
<th>-6</th>
<th>-7</th>
<th>-8</th>
<th>-9</th>
<th>-10</th>
<th>-11</th>
<th>-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration [g/m³]</td>
<td>10⁰</td>
<td>10⁻¹</td>
<td>10⁻²</td>
<td>10⁻³</td>
<td>10⁻⁴</td>
<td>10⁻⁵</td>
<td>10⁻⁶</td>
<td>10⁻⁷</td>
<td>10⁻⁸</td>
<td>10⁻⁹</td>
<td>10⁻¹⁰</td>
<td>10⁻¹¹</td>
<td>10⁻¹²</td>
</tr>
</tbody>
</table>

© Fraunhofer
3) Cleanability of Surfaces; – Measurement Technique

- Comparison of different cleaning detergents regarding particle reduction on equipment surface

Adapted Measurement Technique

Particle Residues on Surface
3) Cleanability of Surfaces – Assessment

Assessment of **surface cleanliness levels** acc. to ISO 14644-9

<table>
<thead>
<tr>
<th>Detected particle size [µm]</th>
<th>Mean particle concentration BEFORE cleaning [particles/cm²]</th>
<th>Mean particle concentration AFTER cleaning [particles/cm²]</th>
<th>Cleaning efficacy per detected particle size</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 5</td>
<td>41677</td>
<td>1142</td>
<td>97.26%</td>
</tr>
<tr>
<td>≥ 20</td>
<td>39639</td>
<td>384</td>
<td>99.03%</td>
</tr>
<tr>
<td>≥ 50</td>
<td>23042</td>
<td>65</td>
<td>99.72%</td>
</tr>
<tr>
<td>≥ 80</td>
<td>4417</td>
<td>11</td>
<td>99.75%</td>
</tr>
</tbody>
</table>

Cleaning efficacy (mean value) **98.94%**

<table>
<thead>
<tr>
<th>Detected particle size [µm]</th>
<th>SPC-class BEFORE cleaning</th>
<th>SPC-class AFTER cleaning</th>
<th>SPC-cleaning efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 5</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>≥ 20</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>≥ 50</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>≥ 80</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SCP-Cleaning Efficacies acc. to ISO 14644-9
3) Cleanability of Surfaces
– Method to determine the »Cleaning Efficacy«

Efficiency regarding removal of particles:

Procedure:

- **Defined contamination** of test pieces with silver particles 0.5µm and larger
- Autom. full-surface SEM **particle count**
- Automated **cleaning** with specific cleaning technology
- **Renewed count** and determination of **cleaning efficiency**

<table>
<thead>
<tr>
<th>Particle size</th>
<th>1-5µm</th>
<th>5-10µm</th>
<th>10-50µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>47023</td>
<td>9427</td>
<td>3063</td>
</tr>
<tr>
<td>After</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Efficiency</td>
<td>46957</td>
<td>9427</td>
<td>3062</td>
</tr>
<tr>
<td>Efficiency %</td>
<td>99.9%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Requirement:

Adequate **material contrast** between particles and surface
1) **Measurement Procedure to classify** Materials (for its particle behaviour)

Creative approach for test bench development:

- Model tests according to established ball & disk test technique from the field of tribology
- Turning the test arrangement
- Simultaneous measurement of emitted particles using an optical particle counter

Analysis of the data

- Procedure enables clear classification of cleanroom suitability of materials
1) **Measurement Procedure** to classify **Materials** (for its particle behaviour)

Example of a typical tribosystem

material pairing = *metallic reference samples*: V2A ↔ 100Cr6

Measurement data recorded for V2A ↔ 100Cr6

Differential representation: Only tendencies recognizable

Cumulative representation: Exponential progression recognizable
1) **Measurement Procedure** to classify **Materials** (for its particle behaviour)

Dependence on particle size

V2A ↔ 100Cr6
- Single measurement value recording
- Mean of single measurement value recordings

Assessment differentiates between varying particle sizes
1) Measurement Procedure to classify Materials (for it’s particle behaviour)

Time-dependent development of particle size

Method provides information about **dynamic wear processes**:

- particle sizes
- cleanroom classification
- friction coefficients
- force patterns
- degree of wear
1) Measurement Procedure to classify Materials (for it’s particle behaviour)

- Particle concentration “within” air volume of 1 m³
 ➔ cleanroom classification (acc. to 14644-1)

- Particle concentration on single point of an equipment/material, “emitted into” air volume of 1 m³
 ➔ equipment/material classification (acc. to ISO/CD 14644-14)
2) Outgassing behaviour of Equipment-Materials used

To find out about the **suitability of equipments** to be used in **ACC-controlled environments**:⇒ outgassing of materials have to be determined

Critical components for clean applications: Amines, Phthalates, Organophosphates, Siloxanes, Dopants, Total VOC and others

Materials used in equipment with potential ACC emission to be monitored:
- Lubricants and sealants
- Surface treatments, coatings and paints
- Plastics and elastomers

Acids as Anions
Bases as Cations

Dopands
VOC

(SEMI F21-95; Gail, 2002)
2) Outgassing behaviour of used Equipment Materials
- Assessment

- **Qualitative** measurements: which substances

- **Quantitative** measurements:
 - mass of outgassing substances
 - Single substances (VOC) & Total quantity (TVOC)

- New: mass of outgassing substances correlated to »active« surface area of the sample in µg/m² (until now: µg/g, µg/m³)

- Basis of classification = outgassing-mass, »emitted into« air volume of 1 m³ → concentration in g/m³

- Classification acc. to ISO 14644-8, e.g. TVOC (23 °C), **ISO class [acc] –5**

<table>
<thead>
<tr>
<th>ISO-AMC Class</th>
<th>0</th>
<th>-1</th>
<th>-2</th>
<th>-3</th>
<th>-4</th>
<th>-5</th>
<th>-6</th>
<th>-7</th>
<th>-8</th>
<th>-9</th>
<th>-10</th>
<th>-11</th>
<th>-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration [g/m³]</td>
<td>10^0</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
<td>10^{-7}</td>
<td>10^{-8}</td>
<td>10^{-9}</td>
<td>10^{-10}</td>
<td>10^{-11}</td>
<td>10^{-12}</td>
</tr>
</tbody>
</table>
3) Cleanability of Surfaces - Assessment

Assessment of surface cleanliness levels acc. to ISO 14644-9

SCP-Cleaning Efficacies acc. to ISO 14644-9
3) **Cleanability of Surfaces**
- VDMA riboflavin test for qualitative assessment

<table>
<thead>
<tr>
<th>Materials used</th>
<th>Design</th>
<th>Cleanliness-suitable assembly</th>
</tr>
</thead>
</table>

Before cleaning
- Standard epoxy floor
- Blind-coated epoxy floor
- Thixotropic surface

After cleaning
- Standard epoxy floor
- Blind-coated epoxy floor
- Thixotropic surface
4) Chemical Resistance of equipment/material surfaces

- Materials: resistant against cleaning and disinfectant liquids being used

- Range of chemicals (hedge):
 - butyl acetate
 - diethyl ether
 - peracetic acid (1%)
 - hydrochloric acid (5%)
 - aceton (100%)
 - formalin (37%)
 - hydrogen peroxide (30%)
 - ammonia (25%)
 - ethanol (100%)
 - isopropanol (70%)

- Tests are performed according to ISO 2812-1: submers-method

- Classification according to ISO 4628: Assessment of visible surface change/damage

<table>
<thead>
<tr>
<th>Value</th>
<th>Scale of Assessment</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No alteration</td>
<td>RESISTANT</td>
</tr>
<tr>
<td>1</td>
<td>Traces of alteration</td>
<td>PARTIALLY RESISTANT</td>
</tr>
<tr>
<td>2</td>
<td>Slight alteration</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Average alteration</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Severe alteration</td>
<td>NOT RESISTANT</td>
</tr>
<tr>
<td>5</td>
<td>Extreme alteration</td>
<td></td>
</tr>
</tbody>
</table>
4) Chemical Resistance of equipment/material surfaces – Assessment

Resistance against chemicals/cleaning detergents:

- Used materials have to be resistant against cleaning and disinfection detergents.
- For wide range to cover: intended use of specimen and a selection of chemicals to be tested.

Tests are performed according to:

- ISO 2812-1: submers-method
- Classification according to ISO 4628-1
- Assessment of the visible surface change and damage

<table>
<thead>
<tr>
<th>Value</th>
<th>Scale of Assessment</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No alteration</td>
<td>RESISTANT</td>
</tr>
<tr>
<td>1</td>
<td>Traces of alteration</td>
<td>PARTIALLY RESISTANT</td>
</tr>
<tr>
<td>2</td>
<td>Slight alteration</td>
<td>RESISTANT</td>
</tr>
<tr>
<td>3</td>
<td>Average alteration</td>
<td>NOT RESISTANT</td>
</tr>
<tr>
<td>4</td>
<td>Severe alteration</td>
<td>NOT RESISTANT</td>
</tr>
<tr>
<td>5</td>
<td>Extreme alteration</td>
<td>NOT RESISTANT</td>
</tr>
</tbody>
</table>
5) Airflow visualization of robotic arms

- The airflow is an important parameter influencing the number of particles in the vicinity of products. Any airborne particles generated are invariably transported by the airflow.

- With the aid of airflow visualization or simulation, information can be gained regarding airflow patterns of robotic arms and in the direct surroundings of the arm.

- Dead water and areas of turbulence may occur. Different airflow directions exist within these areas which may oppose the airflow in the surrounding. Particles within these areas may then not be effectively removed by the airflow. By way of airflow tests, information can be obtained concerning the airflow properties of the system which may have a potential influence on particle deposition and cross-contamination.

- The airflow of the complete system is visualized using a fog generator based on the contamination-free nebulization of DI water. The fog is dispensed above the area of investigation. With the aid of video recordings and photos, localized and general airflow patterns are documented and analyzed.

- The airflow of the complete system can be simulated using CFD software (Fluent of ANSYS, Inc.).
6) Hygienic Design

Expert reports are carried out at the Fraunhofer IPA as a means of proving good manufacturing practices as required by GMP guidelines. The aim of the expertises is to confirm and document the suitability of operating utilities for use in clean manufacturing areas through independent reports written by scientists. The expertises are compiled taking important norms and guidelines into consideration which are concerned with manufacturing under clean conditions.

Analysis of conception and design
In accordance with the guidelines of the EHEDG (European Hygienic Equipment Design Group) and GMP (Good Manufacturing Practice), the conception and design of robotic arms and quality of workmanship are evaluated. The assessments are made based on expertises made by experts from the Fraunhofer IPA.

The expertises to assess the hygienic design of a test piece evaluate such parameters as:
- Materials used
- Material pairings
- Geometries of materials used
- Joining techniques
- Constructive detail solutions
- Components installed
- Manufacturing techniques
- Surface coatings / coating systems
- etc.

An assessment of the technical implementation and execution of conception and design specifications or recommendations as laid down in EHEDG and GMP guidelines is also carried out.

The customer shall provide Fraunhofer IPA a list of the used materials. The list is necessary to perform an accurate assessment also in view of the used materials.
Environments for sterile production require regular decontamination in order to minimize the biological burden to an accepted level. Nowadays, the usage of vaporized hydrogen peroxide to decontaminate controlled environments (e.g. isolators) is the preferred method because this has several advantages over other decontamination procedures and decontaminating agents.

Each decontamination cycle ends with an aeration phase in order to reduce the vaporized hydrogen peroxide concentration to a specified limit. In addition to process-controlled parameters, e.g. rate of air-exchange in the room, the aeration time is also influenced by the vaporized hydrogen peroxide adsorption/desorption behavior of all exposed materials used in the controlled environment. Therefore, a material assessment will help to select suitable materials with a low adsorption of vaporized hydrogen peroxide and its fast desorption during aeration.

The material sample is placed into an emission cell. The duration of the exposure with vaporized hydrogen peroxide with a defined standardized concentration is one hour. After one hour, the setup is changed into aeration mode. The continuous monitoring of the vaporized hydrogen peroxide concentration enables the calculation of a k-value regarding the desorption kinetic of vaporized hydrogen peroxide. Possible catalytic activity of a material can be detected during the adsorption phase of the measurement. All measurements will be performed as triplicate using a fully standardized method to enhance the validity of the results.
8) Riboflavin test to assess cleanability

The procedure is based on the riboflavin test of the German Engineering Federation (VDMA) as of 12/2007. The aim of the test is to provide qualitative proof of the ability to reduce fluorescing test contamination using the representative cleaning method selected. To do this, fluorescing test contamination is first prepared and subsequently applied to the test piece. The advantage of fluorescing test contamination is that very small quantities can be detected and also that excellent locally-resolved photographic material can be obtained. The test contamination is left to dry on for a period of 2 hours and then cleaned off using a wiping simulator. After cleaning, any remaining residual contamination is then identified through fluorescent excitation and documented by way of detailed photography. To achieve adequate statistical certainty, three repeat tests are carried out. The tests are evaluated according to ISO 4628-2 “Evaluation of degradation of coatings”, which assesses the size and quantity of fluorescing residues. Results are then classified in accordance with VDI 2083-17.
9) Biological resistance

- test method according to ISO 846 Method A: fungi Method C: bacteria
- incubation of test samples (approx. 50 x 50 mm) with appropriate inoculum placed on a carbon-free agar-media
- visual and microscopic growth inspection after incubation for 4 weeks at 24 °C for fungi and bacteria
- CSM-Classification is the inferior value of the biological resistance results of method A and method C

<table>
<thead>
<tr>
<th>Biological resistance</th>
<th>CSM-Classification</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>excellent</td>
<td>not visible by 10x magnification</td>
</tr>
<tr>
<td>1</td>
<td>very good</td>
<td>only visible by 10x magnification</td>
</tr>
<tr>
<td>2</td>
<td>good</td>
<td>visible by normal eyesight, up to 25 % of sample surface covered</td>
</tr>
<tr>
<td>3</td>
<td>weak</td>
<td>visible by normal eyesight, up to 50 % of sample surface covered</td>
</tr>
<tr>
<td>4</td>
<td>very weak</td>
<td>considerable growth, over 50 % of sample surface covered</td>
</tr>
<tr>
<td>5</td>
<td>none</td>
<td>strong growth, whole sample surface covered</td>
</tr>
</tbody>
</table>
10) Microbicidity

- Test method according to ISO 22196
- Incubation of test sample with antibacterial property and blank sample of the same material but without antibacterial property
- Covering with appropriate lid
- Incubation for 24 hours at 35 °C
- Recovery of the bacteria from the test samples and determination of the CFU (colony forming units).
- Calculation of the R-value
- Final CSM-Classification is the achieved R-value after 24 hours incubation

<table>
<thead>
<tr>
<th>Mikrobicidity R-value</th>
<th>CSM-classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 4</td>
<td>excellent</td>
</tr>
<tr>
<td>< 4</td>
<td>very good</td>
</tr>
<tr>
<td>< 3</td>
<td>good</td>
</tr>
<tr>
<td>< 2</td>
<td>weak</td>
</tr>
<tr>
<td>< 1</td>
<td>very weak</td>
</tr>
<tr>
<td>0</td>
<td>none</td>
</tr>
</tbody>
</table>